
Ultimate Quake Engine 
Quake 2 BSP Rendering using Microsoft XNA 
Developed by Jacques Krige (Korax) 
 
Credits: 
Very special thanks to Shaun Nirenstein (Crowley9) at NVIDIA for helping out with various aspects and considerations regarding 
rendering performance and HLSL programming. 
 
 
Quake 2 BSP Renderer 
The past few months I've been working on/off on a project that loads and renders Quake2 (idTech2) BSP files using the .NET language 
called C# for the program logic and XNA for input and rendering purposes. Initially the idea was to use XNA and build from the 
ground up game technology to run our titles on using technologies I'm familiar with in the form of the idTech1 and idTech2 engines. 
Initially the idea was to try and swat two flies at once by developing tech that could carry our game titles on as well as have a clean 
replacement for our "Unofficial Quake Engine" (UQE) project. 
 
This is the utopia, but it is not possible to accomplish this in a decent timeframe. 
On the one hand you want to build technology that is competative regarding capabilities to other engines or renderers out there, but on 
the other hand you want to remain faithful to what the technology should be able to do regarding the UQE project. Ultimately its 
impossible to build a single technology that looks into both directions without having a dated or bloated design. We decided the best 
was to go, as Excentrax Games, is to utilize XNA for simpler arcade-like titles and for larger titles license a commercial engine like 
Torque3D and the likes. 
 
So, why are we still working on the Quake2 BSP Renderer? 
Since we spent so much time getting it as far as it is, we decided to finish-up the project and release the source code using the GPL 
license to help other like-minded people to gain access to the source code and hopefully learn from it. Its a much better proposition 
then stuffing it into our archives to gather dust! There is also another twist to the story; The project turned out to be an experimental 
renderer for our efforts over at our "idTech" community project, UQE. We are still looking at writing a .NET/XNA version of the 
idTech2 engine making as much as possible use of XNA to faithfully render the Quake2 game. We will also be looking at building 
loading and translation paths for Quake1 and Hexen2 at a later stage should the Quake2 project be successful. 
 
The UQE project is a very personal project of mine and with it I'm sharing my passion for the idTech engines with both gamers and 
game developers interested in the same subject matter. UQE is not one of our primary game development objectives and its 
development is being managed as time permits us to work on it. The UQE project is great for expanding our knowledge on XNA and 
helping us build and use game subsystems we can re-use for our XNA targetted projects. It also stands as proof for anyone out there 
that game development and its related technologies is completely possible in Africa and in showing she is not as dark and illiterate as 
the media makes her out to be. As far as my research stretches at the time of this writing, Excentrax Games have developed THE most 
complete XNA-based idTech2 BSP renderer out there. Yet, sadly, our renderer is not complete, it still lacks entity (MD2 and submodels) 
rendering as well as rendering static lightmap styles. 
 
Lets get right into the technologies the renderer consists of and what you could learn from it... 
When the renderer starts-up it loads the BSP level specified in its config.xml file. If this file doesn't exist, it creates one with some 
default values. The configuration system implemented is a very quick and dirty one just to allow you to change a few variables that 
would otherwise be hardcoded. 
 
The very first thing Q2BSP does is either load the assets directly from the disk as single files or it loads the assets from the PAK virtual 
file system. The code managing the PAK file is very basic and just manages the loading from a specific PAK file and is not a fully 
fledged virtual file system... yet. Even though optionally loading from a .PAK file is great, I think its not the most optimal solution. For 
a custom virtual file system to work you must be able to stream any data from it for use, but I found it difficult to near impossible to 
stream a wave file into a form that can be played back by XNA. 
 
I did some reading up on the .XNB format, and it seems it can store multiple files and the XNA API can easily access that file to read 
data from it. Since we don't want to re-invent a feature that seems to be present, the best thing most likely to do is to build a little 
conversion tool that can read PAK data and compile XNB data from it, then use the XNB as storage mechanism rather than PAK files. 
 
For this project you'll be able to load any BSP level contained inside a PAK. We have tested it with the pak0.pak file of Quake2 full 
version, but it should work fine with the demo and other custom PAK files. The only requirement for the loading from a PAK is that 
ALL assets that has to be loaded needs to be in that very same file, or everything must be external files if the PAK loading option is 
disabled. Thats how basic the PAK implementation for Q2BSP is. ;) 
 
With the BSP file loaded the renderer is ready to render the world. 
The whole world is broken up into surfaces. A surface is a set of vertices that defines a piece of flat geometry. A surface also has a fixed 
maximum dimensional size limit to easily be broken up for rendering by the PVS and if also an effect of BSP. This means a single flat 
large wall will be made up by several pieces of surfaces. A surface can have several primitives. 
 
 
 



 
Because of BSP partitioning a leaf can have several surfaces attached to it that forms a piece of geometry. A leaf could for example be 
that complete large wall, or just a chunck of it. Next we get something we call clusters, or to put it in easier terms, leaf clusters. 
A cluster is simply a set of possibly visible leafs. So what happens is when you have a specific position in the world, BSP traversing is 
used to determine which cluster you are in. Once we know the cluster number (index) we look up the PVS and get a list of leaves 
visible for that cluster. This set of leaves gets drawn to the screen. 
 
If you want to visualize this in your mind's eye, you can imagine a cluster being a volume of space could be big or small, depending on 
the geometry, you could move you camera in without the geometry PVS changing. Once you move from one cluster to a neigbouring 
cluster the PVS needs to be re-checked and a new set of leaves needs to be drawn. What is notable is that clusters that are closer 
together share relatively the same set of leaves. Its very possible that 5 neigbouring clusters would share 70% of the same leaves, 
depending on how the world is constructed. 
 
One of the performance drawbacks that still remains to be solved is to optimally sort the number of surfaces in the current cluster in 
such a way that we could make use of Index Buffers and execute draw calls using the DrawIndexedPrimitives() function rather than 
using the DrawPrimitives() function that we currently use. DrawPrimitives() gets called one for each surface that is visible in the 
current cluster, but if we could use DrawIndexedPrimitives() we could greatly reduce the number of drawing calls that we need to 
issue. We are still looking at a few scenarios to see where the use of DrawIndexedPrimitives() works well and where it breaks 
functionality. 
 
The first priority is to sort surface rendering by texture (texinfo) then from there build a triangle list based index buffer every time the 
camera changes PVS cluster. This will change the scene rendering from per-surface DrawPrimitives() to per-texture 
DrawIndexedPrimitives(). I'm not sure if it will be jittery if the camera move from one cluster to the next. The only way to know is to 
code it and find out. Maybe changing the code from DrawPrimitives() to DrawIndexedPrimitives() frees the CPU enough that you don't 
notice. For this release the renderer will be rendering the scene primarily using DrawPrimitives() until at a later stage we update the 
code for DrawIndexPrimitives() rendering. 
 
The BSP the renderer traverse the BSP nodes and mark surfaces for rendering in two distinct groups namely "solid" surfaces and 
"translucent/warped" surfaces. The reasoning behind this is to render the world in two phases, phase 1 renders all the solid opague 
surfaces in the world, then phase 2 renders all the translucent and warped surfaces. With the solid surface rendering phase it does not 
really matter if we re-sort the list of surfaces according to texture (texinfo) and not according to its original depth sort order. Most of the 
surfaces are solid surfaces, and sorting according to texture greatly improves rendering performance. We are not so lucky with 
translucent surfaces, because we need to render them in the order we get them from the BSP/VIS to make sure we don't introduce 
rendering anomalies because of the depth and rendering order. 
 
Surfaces with the "warp" flag set gets broken into 64-unit sized sets of sub-surfaces which we call "polygons" within the source code. 
The reason why warped surfaces gets subdivided is to generate more vertices for the original warped surface to make the ST texture 
coordinate warping effect possible. This possible large number of primitives using the same texinfo index are being rendered by a call 
to DrawIndexedPrimitives(). 
 
Classic Quake2 lightmapping have also been implemented using multitexturing. In the pixel shader the texture pixels gets multiplied 
with the lightmap pixels to produce the final pixel for output. We have not yet implemented static lightmap styles, like strobing lights, 
flickering lights and the likes. There are two types of lightmaps implemented in idTech1, idTech2 and idTech3. They are called "static" 
lightmaps and "dynamic" lightmaps. 
 
The difference is static lightmaps are pre-processed lightmaps that are fixed and also could have a "style" pre-processed with it, like 
flickers and strobes and so forth. Then you get "dynamic" lightmaps which gets calculated on-the-fly and gets temporarily blended 
with the original "static" lightmaps. To give a quick example is when you fire a rocket, it generates a pointlight that lights up the area as 
it passes through the air and explodes against an object, that light it generates on-the-fly (no pun intended :) ) is a dynamic lightmap. 
 
This dynamic lightmapping looks pretty ugly, especially with idTech1 and idTech2's low resolution lightmaps. We can remedy this by 
not implementing all the software routines needed to generate and blend this dynamic lightmap by generating dynamic per-pixel lights 
straight on the GPU... afterall, we already have access to both the texture pixels as well as the lightmap pixels. In the renderer you can 
switch on/off a per-pixel pointlight that is attached to your camera position. What this pointlight in reality does is it "eats" the color 
value of only the static lightmap pixel at the pixel shader level and returns a modified static lightmap pixel, which we then multiply 
with the texture pixel to get our final pixel output result. The calculations isn't 100% perfect yet. 
 
Just for the fun of it we implemented two types of lighting; Classic lightmapped multitexturing and actual per-pixel hardware lighting. 
The BSP levels are not completely compatible and designed for per-pixel hardware lighting, but its cool to see it sort-of working. Theres 
a section of code that I left commented that anyone can uncomment which will add per-pixel pointlights for every pointlight entity 
present in any given BSP level loaded. 
 
The focus of the project was to get good Quake2 BSP rendering up and running with decent performance, not focussing on things like 
error-checking, good object-orientated design and great performance. When decompressing the archive you'll find a pre-built binary in 
"release" mode as well as the GPL source code as it stands now at its current state. Included with the binary is a "config.xml" 
configuration file with a few changeable settings. The build is configured to search and load from PAK0.PAK the "base1.bsp" level. All 
that needs to be done is to copy the PAK0.PAK of the Quake2 demo or commercial version into the "baseq2" folder located within the 
"contents" folder. 
 
 
 
 



 
When Q2BSP starts up it generates a file called "config.txt" which contains a list of the names of all the BSP files thats part of the 
commercial version of Quake2. This is done to help anyone that doesn't have a PAK reader tool at hand to have a list of BSP files that 
could be tried out. It is also possible to load some of the deathmatch levels if the commercial version is sufficiently patched, although a 
PAK editing tool will be needed because the data need to be either merged into a single PAK, or everything needs to be unpacked. This 
needs to be done since the Q2BSP renderer doesn't have a fully fledged Virtual File System. 
 
Some other features available in the Q2BSP renderer is the ability to switch between solid and wireframe fill modes. The PVS can also 
be locked to help developers see where the PVS ends from a selected area. Also featuring is the ability is switch the bloom post-process 
effect on/off. The bloom post-process effect itself is slightly over-emphasized in this experimental renderer, but it demonstrates what 
the effect can do to make this classic game media slightly (ever so slightly) more current or at least in the right direction. 
 
Lets get to the requirements to be able to execute the Q2BSP renderer successfully: 
 
Microsoft .NET Framework 3.5 Service Pack 1 (or higher) 
http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en 
 
Microsoft XNA Framework Redistributable 3.0 (or higher) 
http://www.microsoft.com/downloads/details.aspx?familyid=6521D889-5414-49B8-AB32-E3FFF05A4C50&displaylang=en 
 
 
Additional (previous/older) information may be found at the following links: 
http://forums.sagamedev.com/topic.aspx?topicid=555 
http://forums.sagamedev.com/topic.aspx?topicid=599 
http://www.sagamedev.com/developerjournal_post.aspx?journalid=28 
 
 
The project, complete with GPL source code may be downloaded from our UQE website, www.quake-engine.com 
http://www.quake-engine.com/download.aspx?game=q2 
 
 
Jacques Krige 
South African Game Development 
http://www.sagamedev.com 
 
Ultimate Quake Engine 
http://www.quake-engine.com 
 

http://www.microsoft.com/downloads/details.aspx?FamilyId=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=6521D889-5414-49B8-AB32-E3FFF05A4C50&displaylang=en
http://forums.sagamedev.com/topic.aspx?topicid=555
http://forums.sagamedev.com/topic.aspx?topicid=599
http://www.sagamedev.com/developerjournal_post.aspx?journalid=28
http://www.quake-engine.com
http://www.quake-engine.com/download.aspx?game=q2
http://www.sagamedev.com
http://www.quake-engine.com



